

capC-MAP : Analysis of Capture-C data.

capC-MAP is a software package for the analysis of sequencing data from
Capture-C experiments [Hughes2014] [Davies2016]. It is actually a
suit of programs written in C++ and Python, along with a Python
wrapper script which allows a full analysis pipeline to be run using a
single command on Unix-based systems. capC-MAP was written so as to be
as easy to use as possible, but allow maximum customisation and separate
use of the component programs by advanced users. While other other tools
which can analyse Capture-C data are available, these are mostly
extensions to software designed with HiC data in mind. To our knowledge
capC-MAP is the first software dedicated to, and optimised for Capture-C
data; it is designed to be used by beginners and ‘C-method’ experts
alike.

The aim of a Capture-C experiment is to obtain an interaction profile for a
set of “target” genomic loci. This is similar to the aim of a 4C experiment,
but the method allows multiple targets to be probes in a single experiment.
This is achieved using oligo capture technology. A frequently cutting
restriction enzyme is used to fragment the DNA so as to obtain interactions at
high-resolution. Oligos are designed against a set of restriction enzyme
fragments of interest. Throughout this manual we use the term “target” to refer
to restriction enzyme fragments for which oligos have been designed, and
“reporter” for fragments which are found ligated to target fragments. The term
“target” is synonymous with the “viewpoint” or “bait” fragment in 4C.

Contents

	Installation
	Requirements

	Installation

	Quick start
	Build genome index and restriction enzyme fragment list.

	Perform quality control on fastq data files.

	Run capC-MAP analysis pipeline.

	Using capC-MAP
	capC-MAP genomedigest

	capC-MAP run

	capC-MAP postprocess

	capC-MAP combinereps

	capC-MAP getchromsizes

	Advanced usage
	capCdigestfastq

	capCmain

	capCpair2bg

	capCpileup2binned

	capClocation2fragment

	References

	Useful Links

	Frequently Asked Questions

Installation

Requirements

capC-MAP requires a C++ compiler and Python; also the following software should be installed and visible on the system path:

	cutadapt (>=1.11)

	bowtie (>=1.1.1 - note that capC-MAP is not compatible with bowtie2)

	samtools (>=1.3.1)

and the following python packages should be installed:

	BioPython

Version numbers are those which have been tested, and other versions may also work.

Installation

There are several ways to install capC-MAP. One of the easiest is if the bioconda/conda packaging system is available on your system (see https://bioconda.github.io/#install-bioconda for details on how to get it). In this case capC-MAP and all of its requirements can be installed with the single command.

conda install capc-map

If you do not have conda on your system, you will need to install the requirements listed above separately. Then install capC-MAP perform the following steps:

	Download the software and unzip into a directory in your home directory.
Or clone from git using the command:

git clone https://git.ecdf.ed.ac.uk/cbrackle/capC-MAP.git

	capC-MAP consists of a set of programs written in C++ and a Python package,
which both need to be installed on your system. If you have root privileges
on your system you can compile and install the C++ programs by running the
following commands in the capC-MAP root directory

./configure
make
make install

and you can install the Python package using pip with the command

pip install .

when in the capC-MAP package directory.

Alternatively, if you do not have root privileges, you can install a local
copy of capC-MAP in your home directory using, for example, the commands

./configure --prefix=${HOME}/.local/
make
make install

and

pip install --user .

If you do not have pip available on your system you can instead install the
python package using the command

python setup.py install

or without root privileges

python setup.py install --user

	If you have installed capC-MAP in your home directory, you will need to
ensure the binaries directory is present on the system PATH. For example,
by adding the following line to your ~/.bashrc file

export PATH=$PATH:~/.local/bin

Quick start

A typical pipeline for analysis of capture c data has three main steps:

Build genome index and restriction enzyme fragment list.

Since capC-MAP uses bowtie [Langmead2009] for sequence
alignment, a bowtie index for the reference genome must be built. This
requires a single fasta file containing the reference genome. For
example

bowtie-build mygenome.fasta mygeneome

The same fasta file must then be used to generate a list of restriction
enzyme fragments for the genome. This is done using the genomedigest
function in capC-MAP.

capC-MAP genomedigest -f mygenome.fasta -r DpnII \
 -o mygenome_dpnII_fragments.bed

where the options are as follows:

	-f mygenome.fasta

	specifies the fasta
for the reference
genome

	-r DpnII

	specifies the
restriction enzyme
used in the
experiment

	-o mygenome_dpnII_f
ragments.bed

	specifies the output
bed file

Note that the \ character means that a single command is broken across lines.

Pre-built bowtie indexes for many genomes are available for download on the bowtie website (http://bowtie-bio.sourceforge.net), though a fasta file is required to build the list of restriction enzyme fragments. It is essential to ensure that the index and fragments list are built from the same reference genome (for this reason we recommend building you own index).

Perform quality control on fastq data files.

We recommend performing standard quality control on the fastq files, for
example using the FastQC [https://www.bioinformatics.babraham.ac.uk/projects/fastqc] software. Since the
core aim in capture c data it to enrich the library for specific
‘target’ fragments, this may get flagged up the the FastQC report. Also,
since the capture c protocol recommends fragments are sonicated to have
an average length of 200-300bp, depending on the sequencing read length, it
could be that there is a significant proportion of
read-through into the adapters – again this may be flagged
up by FastQC. By default the capC-MAP pipeline includes an adapter
trimming step.

Run capC-MAP analysis pipeline.

The main capC-MAP pipeline is then run using the command

capC-MAP pipeline -c config_file.txt \
 -o mycaptureCexperiment

where the options are as follows:

	-c config_file.txt

	specifies the
experiment
configuration file

	-o mycaptureCexperiment

	specifies a directory
where all output will
be saved

All capC-MAP options are specified in the configuration text file. We
recommend using the example configuration file provided with capC-MAP as
a template. The output directory must not exist. Required inputs
(specified in the configuration file) are:

	a pair of fastq files;

	a bed file containing a list of target restriction enzyme fragments;

	the bowtie index for the reference genome; and

	a bed file containing a genome wide list of restriction enzyme
fragments for the reference genome.

The following output files will be generated in the output directory:

	an in silico digested version of the input sequencing data in a
single fastq file.

	a SAM file containing mapped reads; the same data is also given in
the compressed BAM format.

	a capC-MAP report file giving details of mapped fragments.

	for each target specified in the targets bed file, a ‘validpairs’ file
containing a list of all valid intrachromosomal interactions, and a
‘validinterchrom’ files containing a list of valid interchromosomal
interactions.

	for each target specified in the targets bed file, and depending on
options specified in the configuration file, a bedGraph showing
binned, smoothed, and normalized to reads per million genome wide
interactions.

Once the analysis is complete, some of these outputs are not needed for
most down-stream analyses. For example the in silico digested fastq
file, SAM files and the raw pairs files can usually be deleted to save
disk space.

In order to generate further bedGraphs with different binning or normalization
options without re-running the full analysis, capC-MAP can be run in
postprocess mode (see section capC-MAP postprocess).

Using capC-MAP

The capC-MAP software is essentially a collection of separate tools
along with a “wrapper script”, and can be used in two ways. Either, the
full Capture-C analysis can be performed by using the single command
capC-MAP run, or for advanced use individual steps of the pipeline can
be run separately.

The capC-MAP command can be run in one of five mode:

	genomedigest is used to generate a list of restriction enzyme fragments covering the reference genome;

	run is used to run the full analysis pipeline;

	postprocess is used to generate binned contact profiles;

	combinereps is used to combine processed data sets from replicates; and

	getchromsizes is used to generate a list of chromosome sizes from a list or restriction enzyme fragments.

The run, postprocess and combinereps modes read from a “configuration file”; the other modes take options on the command line.

capC-MAP genomedigest

In order to identify interactions between restriction enzyme fragments,
capC-MAP needs a genome-wide map of where the restriction sites are. Using
the genomedigest mode capC-MAP can generate
this list from a fasta file for the reference genome. Once generated
this can be re-used for any Capture-C experiments using that reference genome.

capC-MAP stores the list of fragments as a standard bed file; this can
be generated with the following command:

capC-MAP genomedigest -f <reference genome fasta file> \
 -r <name of restriction enzyme> \
 -o <output bed file>

where all three options are required. The -r option specifies the
name of a restriction enzyme which is known to capC-MAP (e.g. DpnII which is typically used in Capture-C experiments). New restriction enzymes can be added to capC-MAP by editing the “restriction_enzymes.txt” file which is part of the install (run the genomedigest command with the name of a restriction enzyme - if it is not known, capC-MAP will give the location of “restriction_enzymes.txt”). To add a new enzyme the recognition sequence and also the “cut point” must be specified; the “cut point” does not have to coincide with the true enzyme cutting position, it is just used internally by capC-MAP and will not affect results. (See also section Restriction Enzymes below.)

capC-MAP run

The capC-MAP software performs each of the following processing steps
using a single command line:

	trim adapters from paired-end read fastq files using the cutadapt software [Martin2011]

	perform in silico restriction enzyme digestion,

	align restriction enzyme fragments to reference genome using bowtie [Langmead2009] in single-end read mode,

	sort the resulting SAM file by read name using samtools [Li2009],

	identify “read groups” of mapped restriction enzyme fragments and remove duplicates,

	identify “target” and “reporter” fragments in each group,

	remove interactions between targets, interactions within “exclusion zones”, and groups with multiple non-adjacent reporters,

	remove and count interchromosomal interactions,

	generate pile-ups of interactions for each target,

	generate normalized, binned and smoothed interaction profiles for each target.

Full details of each of these steps are given in the associated
paper [capC-MAP]. This pipeline is based on that
detailed in the original Capture-C publications from the Hughes
Lab [Hughes2014] (and see also [Davies2016]).

The command line takes the form:

capC-MAP run -c <configuration file> \
 -o <output directory>

where all options and input files are specified in the configuration file, and capC-MAP will create a new directory at the
specified location for all output files. capC-MAP will not overwrite existing files, and will instead fail with an error.

The configuration file

The configuration file is a text file which sets all of the
options required for the capC-MAP pipeline. We recommend taking the
example configuration file provided with the capC-MAP installation as a
template. The file is structured such that each line represents an
option specified by the first word on that line. Any line beginning with
a hash ‘#’ character is treated as a comment and ignored by capC-MAP.
Some options are required to be in the configuration file, whereas others
will take a default value if not specified.

The available options are as follows

	FASTQ1 <file>

	Required. Specifies the relative path to the first of the pair of fastq files. Takes exactly one argument; subsequent arguments are ignored.

	FASTQ2 <file>

	Required. Specifies the relative path to the second of the pair of fastq files. Takes exactly one argument; subsequent arguments are ignored.

	TARGETS <file>

	Required. Specifies a bed file containing a list of “target”
restriction enzyme fragments. Each target fragment must match as
fragment given in the RESTFRAGS file. Details are given in
section :ref:’sectiontargets’ below. Takes exactly one argument;
subsequent arguments are ignored.

	INDEX <index>

	Required. Specifies the bowtie index for the reference genome;
this will be passed to bowtie for the alignment step of the
pipeline. The relative path must be given, with the name as
specified when the reference was built using bowtie-build.
Takes exactly one argument; subsequent arguments are ignored.
Pre-built bowtie indexes are available to download on the bowtie
website, though it is essential to ensure that the index is built
from the same reference genome as the restriction enzyme fragments
(for this reason we recommend building the index from the reference).

	RESTFRAGS <file>

	Required. Specifies a bed file for the list of restriction enzyme
fragments covering the reference genome, as generated using
capC-MAP with the genomedigest mode. Note that this must
have been generated for the same restriction enzyme as is specified
by the ENZYME option, and must be generated from the same reference
genome as the bowtie index specified by the INDEX option. Takes
exactly one argument; subsequent arguments are ignored.

	ENZYME <enzyme name|cut sequence>

	Required. Specifies the restriction enzyme used in the experiment, either by name or by
specifying the recognition sequence directly.
As detailed in section capC-MAP genomedigest above, this is typically DpnII in a Capture-C
experiment, but alternatively the recognition sequence can
be specified directly. See section Restriction Enzymes below for further details.
Takes exactly one argument, case insensitive; subsequent
arguments are ignored.

	TRIMADAPTERS [TRUE|FALSE]

	Optional. Default: TRUE. Since the Capture-C protocol recommends
sonicating the library to give short fragments, it is expected that
for many reads sequencing will have gone through into the adapter
sequence. By default capC-MAP uses the cutadapt software to trim
adapters from the input fastq files. This step can be skipped by
setting this option to FALSE. Takes exactly one argument; subsequent
arguments are ignored.

	PARALLEL <N>

	Optional. Default: 1. To speed up processing, some step of
the capC-MAP pipeline can be run on multiple processors. Specifically
sequence alignment using bowtie and sorting and file conversion using
samtools can be run in parallel. This option specifies the number of
processors, and this is passed to bowtie and samtools. Since these are the
slowest steps in the pipeline, no other steps are run on multiple processors.
Takes exactly one integer argument; subsequent arguments are ignored.

	ALIGNMODE [CONSERVATIVE|RELAXED|CUSTOM]

	Optional. Default: CONSERVATIVE. Determines the alignment options
which are passed to bowtie. See section Alignment mode
below for details. The two pre-set options CONSERVATIVE and RELAXED
require no further options. If CUSTOM is specified, everything
following it on the same line is taken to be an option for the
aligner, and is passed verbatim to bowtie (bowtie’s ‘-p’ option, the
index and input/output file names should not be included as capC-MAP
will add these).

	EXCLUDE <N>

	Optional. Default: 1000. Sets the distance in base-pairs, where if a
reporter fragment is closer to a target than this it is discarded.

	INTERCHROM

	Optional. Default: FALSE. Sets whether capC-MAP generates pile-ups for
interchromosomal interactions. Note that valid interchromosomal interaction
pairs are always saved in ‘validinterchrom’ output files.

	BIN <S> <W>

	Optional. Tells capC-MAP to generate binned interaction profiles as well
as restriction enzyme fragment level pile-ups. Since restriction enzyme
fragments have an irregular size, some binning is recommended. The step size
for bins in base-pairs is set by the integer <S>. Smoothing can also be
applied via a sliding window of width <W> base-pairs, i.e. each bin
gives the number of interactions from within a window of that width. To bin
without smoothing set W=S. If the NORMALIZE option is also set TRUE, the
binned profiles will be normalized.

	NORMALIZE

	Optional. Default: FALSE. Sets whether binned interaction profiles are
also normalized to be in units of “reads-per-million”.

	COMBINEMODE [TRUE|FALSE]

	Optional. Default: FALSE. Specifies whether the analysis will be
run with ‘combine mode’ activated. This will combine interactions
from selected targets into a single interaction profile. See
section Combine mode below for details. Takes exactly
one argument; subsequent arguments are ignored.

	COMBINECOUNT <N>

	Optional. Default: 2. Only relevant when combine mode is active.
Specifies how many targets are to be combined. See
section Combine mode below for details. Takes exactly
one integer argument; subsequent arguments are ignored.

	DRYRUN [TRUE|FALSE]

	Optional. Default: FALSE. If set TRUE capC-MAP will be run in “dry run”
mode, which steps through each stage of the pipe-line without actually
running it. This is useful for testing all required files etc. are present,
and generating the ‘capC-MAP.commands.log’ file, which lists all pipe-line
steps as bash command lines (see section Outputs below).

Alignment mode

Alignment of fragments to the reference genome is done using the bowtie
software. By default capC-MAP uses a rather conservative set of
parameters for the alignment, as recommended in the original Capture-C
protocol [Hughes2014]: only fragments which map to a
single genomic location are reported. Another, more relaxed, pre-set for
the alignment parameters where the best alignment for multi-mapping reads
is reported is also available. Alternatively users can specify their own
custom set of parameters to be passed to bowtie. Note that since the
number of processors which bowtie uses is specified separately, this
should not be included in the custom alignment mode line of the
configuration file.

The targets file

A bed file containing a list of all targeted restriction enzyme fragments is a required input, and is specified with the TARGETS option in the configuration file. Each line must contain four fields separated by tabs: chromosome, start, end, and target name; for example

chr2 12345 67890 firsttargetname
chr4 23456 78901 secondtargetname

Target names must be unique, and the same fragment cannot appear more than once. Each target fragment must be also present in the restriction enzymes file specified with the RESTFRAGS option in the configuration file (i.e. there must be a line with the same chrom:start:end fields). capC-MAP provides a utility location2fragment which is useful for generating a valid targets file, e.g. from a bed file containing a list of oligo regions - see section capClocation2fragment.

Restriction Enzymes

capC-MAP needs to know the restriction enzyme used to digest the genome. For Capture-C experiments this is typically DpnII. To use a different restriction enzyme, the DNA recognition sequence can be specified with the ENZYME option. Note that for recognition sequences with an overhang, such as HindIII, there is a nucleotide fill-in step during ligation - this means that the recognition sequence used to generate the restriction enzyme map with the capC-MAP genomedigest command may be different to the one used for the rest of the analysis.

Combine mode

Sometimes a genome feature of interest might appear at multiple locations
in the genome. For example, in the paper in which the Capture-C method
was originally described, the authors studied interactions with
the promoter of the mouse \(\alpha\)-globin gene. There are two
copies of \(\alpha\)-globin the mouse genome, with largely the same
sequence. While oligos designed to target those promoter will lead to
enrichment of fragments containing either copy, these will be associated
to only a single genomic location when aligned to the reference genome.
Thus interactions for the two targets should be combined into a single
interaction profile. This is handled automatically when capC-MAP is run
in “combine mode”, provided that the targets to be combined are named in
a specific way. Names of targets which start with the same string, and
end with “_C1”, “_C2”, “_C3” \(\ldots\) etc. For example,
an experiment targeting the two copies of the mouse \(\alpha\)-globin gene (mm9) might use the following targets:

chr11 32182970 32183819 AGLOB_C1
chr11 32195805 32196636 AGLOB_C2

When run with combine mode set TRUE, capC-MAP will generate a set of output
files with “AGLOB_combined” as the target name, as well as output for
“AGLOB_C1” and “AGLOB_C2” individually.
When capC-MAP is run with “conservative” alignment mode (recommended),
options are passed to bowtie which specify that only reads which map
uniquely to a single location are reported. When combine mode is used,
target fragments are likely to map to multiple locations, so we must
relax this restriction. This is done with the COMBINECOUNT option:
if two targets are to be combined, this should be set to 2; if three
targets are to be combined, this should be set to 3, etc. By default
COMBINECOUNT will be set to 2 when combine mode is active.

Outputs

capC-MAP generates the following files in the output directory:

	capC-MAP.commands.log

	A log file showing a list of command lines for each step of the analysis.
This is also generated in DRYRUN mode.

	captured_report.dat

	A report file from the main processing stage of the pipe-line.
Shows counts of various points where reads were discarded,
useful for evaluating the quality of the data.

	captured_interactioncounts.dat

	Contains counts for each target of the number of valid interactions,
and how many were intra/inter chromosomal.

	srt_aligned.bam

	BAM file for the aligned read fragments sorted by name

	captured_validpairs_targetname.pairs

	A set of files containing a list of all valid intrachromosomal interactions,
one file for each target. Restriction enzyme fragment coordinates are given
in bed file format.

	captured_validinterchom_targetname.pairs

	Similar files showing interchromosomal interactions.

	captured_rawpileup_targetname.bdg

	Set of bedGraph files, one for each target, giving the “piled-up” intrachromosomal
interactions. Each entry refers to a single restriction enzyme fragment, so these
have irregular widths. Units are numbers of reads.

	captured_normalizedpileup_targetname.bdg

	When the NORMALIZE parameter is set TRUE, capC-MAP also generates a set
of bedGraph files where the piled-up intrachromosomal interaction counts
have been normalized to reads-per-million, i.e. the number of reads for
each target genome wide will sum to one million.

	captured_rawpileup_interchom_targetname.bdg

	Set of bedGraph files, giving the “piled-up” interchromosomal
interactions. Only present if option
INTERCHROM was set TRUE in the configuration file.

	captured_normalizedpileup_interchom_targetname.bdg

	When the NORMALIZE and INTERCHROM options are both set TRUE, capC-MAP also generates a set
of bedGraph files where the piled-up interchromosomal interaction counts
have been normalized to reads-per-million.

	captured_bin_S_W_targetname.bdg

	Here S ans W are integers. Set of bedGraph files containing the intrachromosomal
interaction profile which has been binned using a step size S and a window size
W, one file for each target. Units are numbers of reads.

	captured_bin_S_W_RPM_targetname.bdg

	As above, but units are in reads-per-million (RPM). These are generated
instead of the above if option NORMALIZE was set TRUE in the configuration file.

Additionally log files and error files are generated from each step of the pipe-line, and these contain any output from the programs used in each step - this is useful for troubleshooting if capC-MAP fails with an error.

capC-MAP postprocess

The postprocess mode is used to generate additional interaction profiles from a data set which has
already been analysed using the capC-MAP run command. By adding new BIN or NORMALIZE lines
to the configuration file, this mode can be used to generate new
captured_bin_S_W_targetname.bdg or
captured_bin_S_W_RPM_targetname.bdg files from the
captured_rawpileup_targetname.bdg or
captured_normalizedpileup_targetname.bdg files.

The command line takes the form

capC-MAP postprocess -c <configuration file> \
 -o <output directory>

where the configuration file and output directory are the same ones used in the original capC-MAP run command.

If the pile-up files are not present in the output directory, capC-MAP will try to generate them from the
captured_validpairs_targetname.pairs files. By default capC-MAP will not overwrite any existing files.

capC-MAP combinereps

capC-MAP provides a facility for combining replicate data sets. Each set must first be analysed independently using the capC-MAP run command; then the capC-MAP combinereps command is used to combine the data into a single set of files for each target, and generate binned, smoothed and normalized interaction profiles. A typical set of commands might take the form

capC-MAP run -c config_rep1.txt -o output_rep1
capC-MAP run -c config_rep2.txt -o output_rep2
capC-MAP combinereps -c config_rep1.txt \
 -i output_rep1 \
 -i output_rep2 \
 -o output_combinedreps_1_2

where the first two commands run the analysis on each of the replicates, and the third combines that data. The two replicate data sets must be generated using the same targets file, genome index and restriction enzyme, as specified in the configuration file. Multiple instances of the -i option are used to select the directories containing the capC-MAP output for each individual replicate. Once the combined results directory has been generated, new Capture-C profile files with different binning smoothing and normalization options can be generated using the capC-MAP postprocess command as detailed above.

capC-MAP getchromsizes

It is often useful to have a list of the chromosome sizes for a reference genome, and capC-MAP provides a tool to generate this from a restriction enzyme map, as generated using the capC-MAP genomedigest command. The command line takes the form

capC-MAP getchromsizes -f <fragments file> \
 [-o <output file>]

where the fragments file must be in the format generated by capC-MAP genomedigest, and if the optional output file is not specified, the file name chrom.sizes will be used.

Advanced usage

capC-MAP is actually a suit of programs written in C++ along
with a Python “front end” which allows a whole processing pipeline to be
run via a single command line. For advanced usage each of the component
programs can be run independently, and these are documented here. As well as the four core capC-MAP programs, there is a further additional tool capClocation2fragment.

capCdigestfastq

The program capCdigestfastq performs a in silico restriction enzyme
digestion of a pair of fastq sequence files. The program can run in two
modes. In the standard mode, as used in the capC-MAP pipeline, the
program reads from the two paired end read fastq files line-by-line,
checking that the names match for each of the pair. The program splits
the read pair into smaller restriction enzyme fragments at the specified
cutting sequence. As well as the cut sequence, a cut position within that
sequence has to be specified; this does not have to match the real cut
position of the enzyme and will not affect downstream capC-MAP results. All
fragments are output to a single fastq file, with
read pair names given in a format suitable for use the the capC-MAP
program capCmain, once the fastq has been mapped to the reference
genome.

The program can also run in an alternative “long” mode, where only the
longest restriction enzyme fragment from each of the pair is retained,
and output is given in two separate fastq files. This output is not
suitable for use with the capCmain program.

capCmain

The capCmain is the main work-horse program of capC-MAP, and takes
as an input a name-sorted SAM file generated using bowtie to map a fastq
file which was generated by the digestfastq program. It also requires a map of restriction enzyme fragments for the reference genome (as generated by capC-MAP genomedigest), and bed file containing a list of target restriction enzyme fragments. The output is a list of intrachromosomal interactions and a list of interchromosomal interactions for each target.

capCpair2bg

The capCpair2bg program reads in a single bed file list of intrachromosomal interactions (as output by capCmain), and generates a “pile-up” of interaction counts at each restriction enzyme fragment in bedGraph format - i.e. an interaction profile.

capCpileup2binned

The capCpileup2binned program reads in a restriction enzyme fragment level intrachromosomal interaction profile (as generated by capCpair2bg) and generates a binned, smoothed, and normalized interaction profile. Optional parameters are a binning step size S and windows size W (as detailed in section capC-MAP run), and a total number of reads T for normalization to reads-per-million. If only S and W are specified the profile is not normalized; if only T is provided, a normalized profile at restriction enzyme fragment resolution is generated.

capClocation2fragment

The capClocation2fragment program reads in a bed file of genome intervals, and a genome wide map of restriction enzyme fragments (as generated by capC-MAP genomedigest). It finds the mid-point of each interval in the input file, and outputs the restriction enzyme fragment which it falls in. This can be useful for generating the targets file required by capC-MAP, where each target must appear in the genome wide fragments map.

A typical procedure to generate the targets file might be to

	Run the capture oligo sequences through BLAST to find their locations within the reference genome.

	Format the resulting list of locations into a bed file. Run this file though capClocation2fragment to find the list of restriction enzyme fragments to which the oligos map.

	Edit the output bed file to add useful target names and remove duplicated entries (typically oligos will be designed such that there is one at either end of a restriction enzyme fragment).

References

	Hughes2014

	Hughes J.R. et al., “Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment” Nature Genetics 46 (2014)

	Davies2016

	Davies J.O. et al., “Multiplexed analysis of chromosome conformation at vastly improved sensitivity” Nature Methods 13 (2016)

	capC-MAP

	Brackley C.A. et al., “capC-MAP : Analysis software for Capture-C data” (2018)

	Langmead2009

	Langmead B. at al., “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome” Genome Biology 10 (2009)

	Martin2011

	Martin M. “Cutadapt removes adapter sequences from high-throughput sequencing reads” EMBnet.journal 17 (2011)

	Li2009

	Li H. et al., “The Sequence Alignment/Map format and SAMtools” Bioinformatics 25 (2009)

Useful Links

	cutadapt software: cutadapt.readthedocs.io [https://cutadapt.readthedocs.io]

	bowtie software: bowtie-bio.sourceforge.net [http://bowtie-bio.sourceforge.net]

	samtools software: samtools.sourceforge.net [http://samtools.sourceforge.net/]

	Biopython: biopython.org [http://biopython.org]

Frequently Asked Questions

	capC-MAP requires the Biopython Python package. How do I get that?

Biopython can be downloaded from https://biopython.org/wiki/Download
but the easiest way to install it is via pip

pip install biopython

or if you don’t have root privileges

pip install --user biopython

Index

 capC-MAP is a software package for the analysis of sequencing data from
Capture-C experiments [Hughes2014] [Davies2016]. It is actually a
suit of programs written in C++ and Python, along with a Python
wrapper script which allows a full analysis pipeline to be run using a
single command on Unix-based systems. capC-MAP was written so as to be
as easy to use as possible, but allow maximum customisation and separate
use of the component programs by advanced users. While other other tools
which can analyse Capture-C data are available, these are mostly
extensions to software designed with HiC data in mind. To our knowledge
capC-MAP is the first software dedicated to, and optimised for Capture-C
data; it is designed to be used by beginners and ‘C-method’ experts
alike.

The aim of a Capture-C experiment is to obtain an interaction profile for a
set of “target” genomic loci. This is similar to the aim of a 4C experiment,
but the method allows multiple targets to be probes in a single experiment.
This is achieved using oligo capture technology. A frequently cutting
restriction enzyme is used to fragment the DNA so as to obtain interactions at
high-resolution. Oligos are designed against a set of restriction enzyme
fragments of interest. Throughout this manual we use the term “target” to refer
to restriction enzyme fragments for which oligos have been designed, and
“reporter” for fragments which are found ligated to target fragments. The term
“target” is synonymous with the “viewpoint” or “bait” fragment in 4C.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 capC-MAP : Analysis of Capture-C data.

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Quick start

 		
 Build genome index and restriction enzyme fragment list.

 		
 Perform quality control on fastq data files.

 		
 Run capC-MAP analysis pipeline.

 		
 Using capC-MAP

 		
 capC-MAP genomedigest

 		
 capC-MAP run

 		
 The configuration file

 		
 Alignment mode

 		
 The targets file

 		
 Restriction Enzymes

 		
 Combine mode

 		
 Outputs

 		
 capC-MAP postprocess

 		
 capC-MAP combinereps

 		
 capC-MAP getchromsizes

 		
 Advanced usage

 		
 capCdigestfastq

 		
 capCmain

 		
 capCpair2bg

 		
 capCpileup2binned

 		
 capClocation2fragment

 		
 References

 		
 Useful Links

 		
 Frequently Asked Questions

_static/up-pressed.png

_static/up.png

